
Abstract- Splice junction classification in a Eukaryotic cell is an 
important problem because the splice junction indicates which 
part of the DNA sequence carries protein-coding information. 
The major issue in building a classifier for this classification task 
is how to represent the DNA sequence on computers since the 
accuracy of any classification technique critically hinges on the 
adopted representation. This paper presents the experimental 
results on seven representation schemes. The first three 
representations interpret each DNA sequence as a series of 
symbols. The fourth and fifth representations consider the 
sequence as a series of real numbers. Moreover, the first, second 
and fourth representations do not consider the influence of the 
neighbors on the occurrence of a nucleotide, whereas the third 
and fifth representations take the influence of the neighbors into 
considerations. To capture certain regularity in the apparent 
randomness in the DNA sequence, the sixth representation treats 
the sequence as a variant of random walk. The seventh 
representation uses Hurst coefficient, which quantifies the 
roughness of the DNA sequence. The experimental results 
suggest that the fourth representation scheme makes sequences 
from the same class close and the sequences from the different 
classes far, and thus finds a structure in the input space to 
provide the best classification result.  
Keywords - Gene, DNA, exon, intron, representation, splice 
boundary, classification, random walk and Hurst coefficient.  

 
I. INTRODUCTION 

 
Problem description: The biochemical material that carries 
hereditary characteristics from parents to offspring is 
contained in a sequence of chemical known as 
deoxyribonucleic acid (DNA). A gene consists of a 
continuous stretch of DNA that is needed to produce a 
particular protein. The process by which the DNA gives rise 
to a protein is called gene expression. In a eukaryotic cell, 
i.e., the cell that contains a nucleus, the gene expression 
involves the synthesis of premRNA on the DNA templates 
(transcription), removal of the non-coding region (splicing) 
from the premRNA to form mRNA, and the synthesis of the 
protein on the mRNA templates (translation). Due to the 
splicing, a DNA sequence consists of alternating segments of 
exon and intron, where an exon is a nucleotide sequence that 
is expressed or translated into protein, and an intron is an 
intervening sequence that is transcribed into RNA, but later 
eliminated from the transcript by splicing its adjacent exons 
(Fig. 1). The splice junction refers to the point where the 
splicing takes place, i.e., it is the meeting point of intron and 
exon.  
 
Motivation: Localization of protein coding region in a DNA 
sequence by pure biological means is a time-consuming and 

costly procedure. Hence, many computational methods have 
been attempted to recognize the splice junctions. To the best 
of our knowledge, no paper has highlighted on studying the 
representation issues of the splice junction problem. The 
performance of any classification technique critically depends 
on the representation. For instance, the DNA sequence can be 
represented as a symbol, binary numbers or real numbers. In 
addition, we can exploit the influence of the neighbors or 
some other characteristics of the sequence to form better 
representation schemes.  
 
Objective: This work conducts experiments to find the 
appropriate representation for the splice junction 
classification task. It involves (a) recognizing exon/intron 
boundaries, or “donor” sites, (b) recognizing intron/exon 
boundaries, or “acceptor” sites, and (c) neither. To measure 
the generalization capability of the classifier, we have used 
standard classification error measures.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: The transcription and spicing of a gene in the nuclease of a 
eukaryotic cell. Each circle in the DNA sequence represents a nucleotide, 
i.e., any one of Adenine (A), Thiamine (T), Cytosine (C) or Guanine (G). 
Each circle in the premRNA and mRNA is A, U (Urethane), C or G. 
 
Scope: The data set, which we have collected from 
[Blake:98], contains 3190 samples.  Approximately 25% 
samples of the data set have intron-exon boundaries, the other 
25% samples have exon-intron boundaries, and the remaining 
50% samples have no boundaries. Each sample is a sequence 
of 60 nucleotides, which we denote by F1 through F60, and 
the boundary (if any) is just at the middle (Fig. 2). Each 
sequence is any one from the three classes, and the aim is to 
identify the midpoint of the sequence as being an exon-intron 
(EI) boundary, an intron-exon (IE) boundary, or neither 
boundary (N).  
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Issues: The aim of an appropriate representation is to form a 
structure in the input space such that two sequences from the 
same class remain in the close vicinity in the input space, and 
the sequences from different classes remain wide apart. This 
problem could be posed by considering the frequency of 
occurrence of the nucleotides or by defining certain distance 
function in the input space. Both of these two techniques 
implicitly compress the information needed to represent the 
input sequence. It is achieved by making the representations 
similar (dissimilar) for sequences of same  (different) class. 
The compression becomes more effective when some 
intrinsic properties of the sequence like influence of the 
neighbors, roughness are reflected in the representation.   
 
Another major problem is the representation of the sequences 
that have neither exon/intron nor intron/exon boundary. 
Representing patterns for this class is difficult since (a) the 
space covered by this class is very large, and often not 
enough training patterns are present to cover such a large 
space, and (b) this class and the other two classes are 
overlapping.  
 
 
 
 
 
 
 
Fig. 2: Splice junction classification problem with the given set of data. Each 
DNA sequence contains sixty nucleotides, and their position is indicated from 
the left by F1, F2,… , F60. The boundary (if any) occurs between F30 and 
F31. 
 

II. METHODOLOGY 
 
Representation 1: A pure symbolic approach is adopted in 
this representation. All the four possible nucleotides are 
represented using different symbols, for instance A for 
Adenine, T for Thiamine, C for Cytosine and G for Guanine. 
Hence, a sequence of length 60 is represented as series of 60 
symbols. We can construct a rule base of all possible (460) if-
then rules that relate any valid sequence of length 60 and the 
output class. When a new sequence arises, the class label of 
this sequence can be determined using the class label of the 
matching sequence in the rule base. However, constructing 
and accessing such a large rule base is computationally 
intractable. In contrast, if we construct a database with less 
number of rules, then for some valid input sequence, no rule 
may fire because there is no match between the input and the 
rules. Hence, we need to decrease the number of rules without 
compromising much in the classification efficiency. In other 
words, from a small set of rules the classifier needs to 
generalize such that the classifier can classify any sequence 
with high classification efficiency. The generalization with 
less number of rules is possible if some property of the 
sequence is reflected in the representation so that it can be 
subsequently captured by the classifier. To achieve that, we 

separate the given DNA sequences into two sets: training set 
Tr and testing set Ts (Tr Ts∩ = ∅ ). The training set Tr is 
used for building the classifier, and the testing set Ts is used 
to determine how efficient the resultant classifier is. The 
resultant classifier can be used to classify any valid input 
sequence. Below we describe some approaches along this 
line.  
 
Representation 2: It has been observed that inside intron, not 
all triplets of nucleotides (called codons) appear with the 
same probability. Specifically, the probability of occurrence 
of a nucleotide in intron is different for each position. The 
exon does not have this property. Hence, this property can be 
exploited to find the difference between intron region and 
exon region. Each position in the codon is represented by 0, 
1, and 2. Hence any nucleotide can be viewed as a member of 
the alphabet {A0, A1, A2, T0, T1, T2, C0, C1, C2, G0, G1, 
G2}. A1 indicates that the nucleotide is Adenine and it at the 
second position of the codon. Using this representation, the 
Jenson-Shanon  divergence measure [Galvan:00] is computed 
for the two halves (F1 to F30 and F31 to F60). The Jenson-
Shanon divergence measure is supposed to attain the 
maximum value at the point where two dissimilar regions are 
merged. If the divergence measure crosses some threshold, 
then it is considered as the splice junction. The appropriate 
value of the threshold is estimated from the training set.  
 
Representation 3: Like the first representation, four different 
symbols are used here. Here the focus is on (a) the frequency 
of occurrence of a particular nucleotide at a particular 
position, and (b) how the occurrence of that nucleotide is 
influenced by the previous nucleotides in the series. As a 
classifier, we have used hidden Markov model with five 
states. We train the model using the Baum-Welch algorithm 
[Bengio:99] on the training set.  
 
Representation 4: Here we are interested in the structure of 
the input space. In this representation, each nucleotide is 
represented as [Towel:94] 

   andA = 0001, G = 0010, C = 0100  T = 1000     (1) 
Note that here each nucleotide is occupying a corner of a four 
dimensional hypercube, and hence the distance between any 
two nucleotides is constant. Another possible representation 
is A = 00, T = 01, C = 10, G = 11. But this representation is 
more biased from the Euclidean distance sense since it 
indicates A is closer to T than G. Hence, we have adopted the 
representation of Equation (1). The sequence ATC is 
represented as 0001 1000 0100. Thus, each DNA sequence of 
the training and test set is represented as a string of 240 zeros 
and ones.  
 
We have applied a feedforward neural network with 
backpropagation learning as a classifier [Jang:97]. The 
network has three layers, and the numbers of nodes in the 
first, second and third layers are 240, 10 and 3, respectively. 

F1 F30 F31 F60 
Splice junction 



The classifier searches 240-dimensional hyperspace to find a 
structure in the hyperspace. The classifier classifies a test 
sequence based on in which structure the test pattern falls. 
Note that while forming the input space or while searching 
the input space, we do not consider explicitly the interaction 
between two neighboring nucleotides.  
 
Representation 5: In this representation, we express a DNA 
sequence using the same format as in Equation (1). But, the 
sequence is formed as a 4 60×  vector. Hence, the sequence 
ATC is represented as  

0 1 0
0 0 1
0 0 0
1 0 0

                                         (2) 

In addition, the sequence is considered similar to a time 
series. It means the appearance of a nucleotide depends on the 
previous nucleotide of the series.  
 
We have constructed a time delay feedforward neural 
network (with four unit time delay) that approximates the 
sequences of Tr  for a particular class [Plataniotis:96]. For 
three classes we have used three neural networks of same 
configurations: 20, 5 and 4 nodes in the first, hidden and 
output layers, respectively. The networks act as predictors, 
and their prediction error is used to train them. Let us assume 
a sequence 1 2 60[ ... ]'x x x Tr= ∈x  is from the class EI. 

When a part of the sequence x (say 1 2 15...x x x ) is fed, the 

network predicts  (say 16o ) the nucleotide at the 16th position 

based on the last four nucleotides (i.e. 12 13 14 15x x x x ) in x. 

Now the difference between 16o  and 16x  is found out. This 
difference acts as an error to train the network iteratively so 
that the prediction becomes more accurate. Next the 
difference between the network output 17o  and the actual 

nucleotide value 17x  is calculated. Again, the difference is 
used to train the network. This procedure is carried out for the 
whole sequence x, and it is repeated for all the sequences of 
the given class. Thus for the three classes, three predictors are 
trained.  
 
When a new sequence 1 2 60[ ... ]'x x x Ts= ∈% % % %x  appears, it is 

fed to all the predictors. Initially 1 2 3 4x x x x% % % %  is fed to the 

predictor for the class EI. It produces the output 5o . Now the 

error is computed as 2
5 5 5( )e x o= −% . Following the similar 

procedure, the total error by the predictor is 
60 2

5
( )EI i ii
x o

=
= −∑ %ò . Similarly the errors for the 

predictors corresponding to the other classes are calculated. 
The predictor that produces the least error is the model closest 
to the sequence, and hence the class label of the closest 
predictor is accepted as the class label of the test sequence.  

Representation 6: This measure attempts to extract some 
regularity from the apparent randomness inherent in the DNA 
sequence. In the conventional random walk model, a walker 
moves either up ( 1iu = + ) or down ( 1iu = − ) by one unit 
length at the ith step of the walk. Following this concept, one 
definition of the DNA walk is that the walker steps up if a 
pyrimidine (C or T) occurs at the position i along the DNA 
chain, while walker steps down if a purine (A or G) occurs at 
the ith position [Havlin:99]. Thus at the ith nucleotide the 
position of the walker is 

1

i
i jj

Y u== ∑ , and the sequence 

appears as a time series. Note that in the Representation 4 and 
5, the sequence can have values only in {0, 1}; but now the 
sequence can have any positive or negative discrete value. 
The classification is carried out in the following steps: (a) 
Represent all sequences in the training and test sets with the 
DNA walk representation. (b) Find the mean sequences for 
each class. For instance, the mean sequence for the class EI is 

 is from  and class EI 

no. of sequences in  that are from class  
ijTri

Y

EIj Tr EIm ∑= Y
 

(c) When a new test sequence 1 2 60[ ... ]'Y Y Y=% % % %Y  appears, we 
find the mean sequence closest to it using the following 

similarity measure: 
60 2

1
( , ) ( )EI EI EIj jj

S m Y
=

= −∑% %m Y . (d) The 

class label of %Y  is the class label of the closest mean 
sequence.  
 
Using the DNA walk representation, we have plotted the 
traces corresponding to all the three classes (Fig. 3). We can 
observe that to some extent the lines representing the classes 
IE and EI can be separated visually; however, even for a 
human observer it is difficult to separate the lines 
corresponding to the class N from the lines of the other two 
classes. It shows that no classifier with the DNA walk 
representation can produce high classification efficiency for 
the class N.  
 

 
Fig. 3: The blue, red and green lines indicate the DNA walk for the genes 
with intron/exon boundary, exon/intron boundary and neither. We can 
observe that blue and red lines can be separated better than the red and green, 
and blue and green lines. Hence, while using the DNA walk representation, 
the classifiers also cannot classify the sequences of the class N.   



Representation 7: In the DNA walk, it has been noticed that if 
the ruggedness or irregularity of a part of the DNA walk is 
scaled up, then the resultant ruggedness becomes similar to 
the ruggedness or irregularity of the whole sequence 
[Havlin:99]. This clue can act as the regularity in the DNA 
walk, and thus it can be used to characterize the time series. 
The Hurst exponent intends to quantify this clue such that the 
quantified values are relatively insensitive to translation, 
scaling, noise and nonstationarity [Addision:97]. One popular 
approach to estimate the Hurst exponent is the dispersional 
analysis. It needs the following three steps to be performed 
on a sequence: 
1. Partitioning: Each sequence is partitioned into equal 
intervals of length lδ. Let us call the ith interval ( , )lW i δ . 
2. Single scale statistics: It can be of two types:  
(a) Local statistics: Statistics based on the values of the DNA 
walk within a single interval are extracted. The local statistic 
in the interval ( , )lW i δ  is the mean of the data in each 
interval.   
(b) Partition based statistics: The partition-based statistic 

( )lI δ is the standard deviation of the means. Next, the whole 
process is repeated for several lengths of the interval lδ.  
3. Transscale statistics: The transscale statistics is 1.0 plus 
the slope of a linear regression that fits a plot of log( ( ))lI δ  
vs. log( )lδ  for all l.   
 
The Hurst exponents are extracted for exon and intron regions 
of each sequence in the training set. The extracted Hurst 
coefficients are used to train a two-class feedforward neural 
network with backpropagaton learning. Whenever a new 
sequence appears, the Hurst coefficients of its two halves are 
determined, and then the Hurst exponent of each half is fed to 
the neural network to identify the type of that half. The splice 
junction can be classified easily after we know the identity of 
each half.   
 
 

III. RESULTS AND DISCUSSION 
 
In the data set, we have removed the sequences where some 
nucleotides have unknown values. Half of the available 
sequences are used for training and the remaining half are 
used for testing. We have not studied Representation 1 as it is 
computationally intractable. The classification performances 
using the remaining six representations are shown in TABLE 1. 
We can observe that the fourth representation is providing the 
best result even for the class N. This conclusion remains valid 
even when we performed experiments on three other large 
data sets obtained from GenBank. It indicates that the 
structure of the input space is important, Representation 4 is 
able to form a better structure in the input space and the 
dependency of the neighbors is implicitly captured in 
Representation 4. 
 

TABLE 1 
 
COMPARATIVE CLASSIFICATION PERFORMANCE WITH SIX REPRESENTATIONS. THE 
CLASSES ARE INTRON-EXON (IE) BOUNDARY, EXON-INTRON (EI) BOUNDARY AND 
NEITHER (N).   
 

Representation IE EI N Overall 
2 34.34% 46.32% 61.32% 50.82% 
3 72.45% 78.56% 45.67% 60.58% 
4 85.16% 93.12% 70.45% 79.79% 
5 67.23% 76.35% 22.45% 47.12% 
6 82.67% 91.47% 9.32% 48.19% 
7 52.45% 54.37% 54.37% 53.89% 

 
 
Note that (a) instead of neural networks or hidden Markov 
models, other classifiers could be used, and in that case the 
classification performances may vary, (b) for Representation 
1, 4, 5 and 6, all training and testing sequences should be of 
same length, although for Representation 2, 3 and 7 this 
constraint is not present, and (c) due to the space limitation, 
we could not discuss many other representations.  
 
The future works would be (a) construction of a better 
classifier using Representation 4, (b) extraction of 
classification rules from the data set, (c) studying the 
efficiency of the Representation 4 when some DNA sequence 
has missing values, and (d) developing a modular approach 
involving all the representations.  
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